Math, asked by prasantkrchampi2001, 1 year ago

If tanα=1/2 and tan β=1/3,then find the value of α+β

Answers

Answered by RAJPUTANALIONS
0

 \tan\alpha   =  \frac{1}{2}  \\  \\  \tan( \beta )  =  \frac{1}{3}  \\  \\ and \:  \tan(\alpha  +  \beta)  =  \frac{ \tan\alpha  +  \tan\beta }{1 -  \tan \alpha  \tan\beta  }  \\  \\  \tan( \alpha  +  \beta )  =  \frac{ \frac{1}{2} +  \frac{1}{3}  }{1 -  \frac{1}{6} }  \\ \\   =  >  \frac{ \frac{3 + 2}{6} }{ \frac{6 - 1}{6} }  \\  \\  =  >  \frac{ \frac{5}{6} }{ \frac{5}{6} }  \\  \\  =  > 1 \\  \\ hence \: ( \alpha  +  \beta ) =  { \tan }^{ - 1}(1 ) \\  \\ i.e \:  \alpha  +  \beta  =  {45}degree
Answered by manissaha129
0

Answer:

 →\tan( \alpha )  =  \frac{1}{2}\:(given)  \\ → \tan( \beta )  =  \frac{1}{3}\:(given)  \\→\boxed{  \tan( \alpha  +  \beta )  =  \frac{ \tan( \alpha )  +  \tan( \beta ) }{1 -  \tan( \alpha ) \tan( \beta )  }} ✓ \\→ \tan( \alpha  +  \beta )  =  \frac{( \frac{1}{2} +\frac{1}{3})}{1 - ( \frac{1}{2}  \times\frac{1}{3})}  \\ → \tan( \alpha  +  \beta )  =  \frac{ \frac{(3 + 2)}{6} }{1 - ( \frac{1}{6}) }  \\ → \tan( \alpha  +  \beta )  =  \frac{ \frac{5}{6} }{ \frac{5}{6} }  \\ → \tan( \alpha  +  \beta )  = 1 \\→ ( \alpha  +  \beta ) =  \tan ^{ - 1} (1)  \\ → \boxed{( \alpha  +  \beta ) =  \frac{\pi}{4} }✓

  • π/4 is the right answer.
Similar questions