If tanθ=1/√2, find the value of cosec²θ-sec²θ/cosec²θ+cot²θ
Answers
Answer:
3 / 10
Step-by-step explanation:
Given :
tan Ф = 1 / √ 2
We have to find value of :
cosec² Ф - sec² Ф / cosec² Ф + cot² Ф
We know :
tan Ф = P / B
Also :
H² = P² + B²
H = √ P² + B²
H = √ 1 + 2
H = √ 3
Now we have :
H = √ 3 , P = 1 and B = √ 2
cosec² Ф - sec² Ф / cosec² Ф + cot² Ф
= > [ ( H / P )² - ( H / B )² ] / [ ( H / P )² + ( B / P )² ]
Putting values here we get :
= > ( 3 / 1 - 3 / 2 ) / ( 3 / 1 + 2 / 1 )
= > ( 3 / 2 ) / ( 5 / 1 )
= > ( 3 / 10 )
Therefore , the value of cosec² Ф - sec² Ф / cosec² Ф + cot² Ф is 3 / 10 .
Answer:
Step-by-step explanation:
Given Tan θ = 1/√2
We know that Tan θ = p/b
So, p= 1 and b= √2 , We have to find h
Also we know that H²= P²+b²
So, H² = (1)² + (√2)²
= √1 + 2
H² = √3
So now we have all values p= 1 , b= √2 and h= √3
To find :- cosec²θ-sec²θ/cosec²θ+cot²θ
- Cosecθ = h/p = √3/1
- Secθ= h/b = √3/√2
- Cotθ= b/p= √2/1
Putting these values in the given equation ↓
(√3)² – (√3/√2)² / (√3)² + (√2/1)²
3 – (3/2) / 3 + (2/1)
3/2 x 1/5 = 3/10