If tanθ = 1/3 , the value of 3sin2θ + cos2θ is
Answers
Answered by
2
➲ Correct Question :-
⦿ If tanθ = 1/3 , find the value of 3 sin²θ + cos²θ.
➲ Given :-
◑ tan∅ = 1/3
➲ To Find :-
◑ 3 sin²∅ + cos²∅
➲ Solution :-
we know,
⦿ tan ∅ = (perpendicular) / (base)
so, let :-
◑ perpendicular = 1 units
◑ base = 3 units
By applying Pythagoras theorem :-
◑ (Hypotenuse)² = (Base)² + (Perpendicular)²
✒ H² = (3)²+(1)²
✒ H² = 10
∴ H = √10
❒ Hence, Hypotenuse = √10 units
Now,
◑ sin∅ = (perpendicular) / (Hypotenuse)
∴ sin∅ = (1/√10) units
◑ cos∅ = (base) / (Hypotenuse)
∴ cos∅ = (3/√10) units
➽ Now, By Calculation :-
◑ 3 sin²∅ + cos²∅
✒ 3× ( 1/√10)² + (3/√10)²
✒ 3× (1/10) + (9/10)
✒ (3/10) + (9/10)
✒ 12/10
∴ 6/5
➲ Answer :-
◑ The value of 3 sin²θ + cos²θ is 6/5
Attachments:
Similar questions