If tanθ = (1/√5), find the value of (cosec²θ – sec²θ)/(cosec²θ + sec²θ) .
Answers
Answered by
3
(cosec² θ - sec² θ) / (cosec² θ + sec² θ) = 2 / 3
Explanation:
tanθ = (1/√5)
tan² θ= 1/ 5 ---------(1)
As tan² θ = sec² θ - 1, we get:
sec² θ - 1 = 1/5
sec² θ = 1/5 + 1 = 6/5
Taking the reciprocal on both sides of equation (1), we get:
1/ tan² θ= 5
Cot ² θ = 5
As Cot² θ = Cosec² θ - 1, we get:
Cosec² θ - 1 = 5
Cosec² θ = 6
(cosec² θ - sec² θ) / (cosec² θ + sec² θ) = (6 - 6/5) / (6 + 6/5)
= (24/5) / (36/5)
= 24 / 36
= 2 / 3
Similar questions
Accountancy,
5 months ago
Biology,
11 months ago
Social Sciences,
11 months ago
Math,
1 year ago
Math,
1 year ago