if tan=1/ROOT7 then show that cosec^2tita-sec^2tita/cosec^2tita+sec^2tita=3/4
Answers
Answered by
0
tan© =1/√7
tan^2© = 1/7
we know,
sec^2© -tan^2© = 1
sec^2© = 1 + tan^2©
=1 + 1/7 = 8/7
also know ,
tan© = 1/cot©
cot© = √7
cot^2 =7
use formula ,
cosec^2© -cot^2© = 1
hence,
cosec^2 ©= 1+7 =8
now,
LHS =(cosec^2© - sec^2©)/(cosec^2© +sec^2©)
=( 8 - 8/7 )/( 8 + 8/7)
=(56 -8)/(56 + 8)
=48/64
=3/4 = RHS
tan^2© = 1/7
we know,
sec^2© -tan^2© = 1
sec^2© = 1 + tan^2©
=1 + 1/7 = 8/7
also know ,
tan© = 1/cot©
cot© = √7
cot^2 =7
use formula ,
cosec^2© -cot^2© = 1
hence,
cosec^2 ©= 1+7 =8
now,
LHS =(cosec^2© - sec^2©)/(cosec^2© +sec^2©)
=( 8 - 8/7 )/( 8 + 8/7)
=(56 -8)/(56 + 8)
=48/64
=3/4 = RHS
Similar questions