Math, asked by mnatu21, 1 year ago

if tan∅+ 1/tan∅=2 then show that tan^2∅+1/tan^2∅=2

Answers

Answered by Narutsu
2

Let theta= x (so calculation is simpler)

 \tan(x)  +  \frac{1}{ \tan(x) }  = 2

Squarring both sides

 {( \tan(x)  +  \frac{1}{ \tan(x) })}^{2}  = 4

 { \tan( x) }^{2}  +  \frac{1}{ { \tan(x) }^{2} }  - 2 = 4

{ \tan( x) }^{2}  +  \frac{1}{ { \tan(x) }^{2} } = 2

Answered by TRISHNADEVI
15
 \red {\huge{ \underline{ \overline{ \mid{ \bold{ \purple{ \: \: SOLUTION \: \: \red{\mid}}}}}}}}

 \underline{\bold{ \: \: GIVEN \: \: : }} \: \: \: \: \bold{tan \phi + \frac{1}{tan \phi} = 2 }\\ \\ \underline{ \bold{ \: \: TO \: \: SHOW\: : }} \: \: \: \bold{tan {}^{2} \phi \: + \: \frac{1}{tan {}^{2} \phi} = 2 }

 \bold{tan \phi + \frac{1}{tan \phi } = 2 } \\ \\ \bold{ = > \frac{tan {}^{2} \phi + 1}{tan \phi} = 2} \\ \\ \bold{ = > tan \phi {}^{2} + 1 = 2 \: tan \phi} \\ \\ \bold{ = > tan {}^{2} \phi - 2 \: tan \phi + 1 = 0 } \\ \\ \bold{ = > ( tan \phi - 1) {}^{2} = 0} \\ \\ \bold{ = > tan\phi - 1 =0} \\ \\ \bold{ = > tan \phi= 1 \: \: - - - - - - > (1)}

 \underline{ \bold{ \: \: Putting \: \: the \: \: value \: \: of \: \: \boxed{ \: tan \phi \: } \: \: in \: \: L.H.S. \: \: }} \\ \\ \bold{L.H.S. = tan {}^{2} \phi + \frac{1}{tan \phi} }\\ \\ \bold{ = (1) {}^{2} + \frac{1}{1}  \: \: \: \: \: [ From\: \: (1) \:] } \\ \\ \bold{ = 1 + 1} \\ \\ \bold{ = 2} \\ \\ \bold{ = R.H.S.}

\boxed{\bold{\purple{tan {}^{2} \phi \: + \: \frac{1}{tan {}^{2} \phi} = 2 }}}

 \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \underline{ \bold{ \: \: Hence \: \: Proved. \: \: }}

mnatu21: thank you very much
Similar questions