If tanθ=1 then, find the values of sinθ+ cosθ/secθ+cosecθ
Answers
Answered by
8
tanθ = 1
we know, tanθ = tan45° = 1
so, θ = 45°
∴ sin45° = 1/√2 , cos45° = 1/√2
sec45° = √2 and cosec45° = √2
now, (sinθ + cosθ)/(secθ + cosecθ)
= (1/√2 + 1/√2)/(√2 + √2)
= (2/√2)/(2√2)
= (√2)/(2√2)
= 1/2
Hence,
we know, tanθ = tan45° = 1
so, θ = 45°
∴ sin45° = 1/√2 , cos45° = 1/√2
sec45° = √2 and cosec45° = √2
now, (sinθ + cosθ)/(secθ + cosecθ)
= (1/√2 + 1/√2)/(√2 + √2)
= (2/√2)/(2√2)
= (√2)/(2√2)
= 1/2
Hence,
Answered by
1
Answer:
Ans -2/4=1/2
shbebbdjsjns
bsnsbs
Attachments:
Similar questions