Math, asked by Xennial, 1 day ago

If tan θ = 1 ; then the value of (sin²θ - cos²θ) is :​

Answers

Answered by Anonymous
46

Given:-

\red{➤}\:\sf \tan \theta = 1

\\

To Find:-

\orange{☛}\:\sf Value \:of\:(sin²θ - cos²θ) \_\: \_\:  \_\: (1)

\\

Solution:-

\begin{gathered}\\\quad\longrightarrow\quad \sf \tan\theta= 1  \\\end{gathered}

\begin{gathered}\\\quad\longrightarrow\quad \sf \tan\theta= tan \:45⁰  \\\end{gathered}

\underline{\tt\pink{Comparing\:both\:sides-}}

\green{ \underline { \boxed{ \sf{\theta = 45⁰}}}}

\underline{\tt\pink{Putting \:Values\: in\: (1)-}}

\begin{gathered}\\\quad\longrightarrow\quad \sf (sin²45⁰ - cos²45⁰)  \\\end{gathered}

\begin{gathered}\\\quad\longrightarrow\quad \sf ((\frac{1}{√2})^2 - (\frac{1}{√2})^2)  \\\end{gathered}

\begin{gathered}\\\quad\longrightarrow\quad \sf (\frac{1}{2} - \frac{1}{2})  \\\end{gathered}

\begin{gathered}\\\quad\longrightarrow\quad \sf 0  \\\end{gathered}

\begin{gathered}\\\quad\longrightarrow \boxed{\sf { (sin² \theta - cos² \theta) =0}}\end{gathered}

Alternate Method -

\begin{gathered}\\\quad\longrightarrow\quad\sf \tan\theta = 1  \\\end{gathered}

\begin{gathered}\\\quad\longrightarrow\quad\sf \frac{\sin\theta}{\cos\theta} = 1  \\\end{gathered}

\begin{gathered}\\\quad\longrightarrow\quad\sf \sin\theta = \cos \theta\_\: \_\:  \_\: (2)  \\\end{gathered}

\underline{\tt\purple{Taking\: (1)-}}

\begin{gathered}\\\quad\longrightarrow\quad \sf (sin²\theta - cos²\theta)  \\\end{gathered}

\begin{gathered}\\\quad\longrightarrow\quad \sf (sin²\theta - sin²\theta) \qquad(by \:(2)) \\\end{gathered}

\begin{gathered}\\\quad\longrightarrow\quad \boxed{\sf 0 }\\\end{gathered}

Answered by ToxicEgo
29

\huge\purple{\mid{\fbox{\tt{Given:}}\mid}}

  • tan\theta=1

\huge\green{\mid{\fbox{\tt{To Find:}}\mid}}

  • sin²\theta-cos²\theta=?

\huge\red{\mid{\fbox{\tt{Solution:}}\mid}}

Given that,

tan\theta=1

: . \theta= 45°

Now, sin²\theta-cos²\theta

= sin²45°-cos²45°

= (1/2)-(1/2)

= 0

: . sin²\theta-cos²\theta=0

\small\fbox\pink{Hope itz help uh bacchi !}

Similar questions