Math, asked by YagneshTejavanth, 2 months ago

If tan⁻¹ (x - 1) + tan⁻¹ (x) + tan⁻¹ ( x + 1 ) = tan⁻¹ (3x) then x =​

Answers

Answered by pulakmath007
14

SOLUTION

TO SOLVE

\displaystyle\sf{ { \tan}^{ - 1}(x - 1) +  { \tan}^{ - 1}(x) + { \tan}^{ - 1}(x + 1) =   { \tan}^{ - 1}(3x)}

FORMULA TO BE IMPLEMENTED

\displaystyle\sf{ { \tan}^{ - 1}(x ) +  { \tan}^{ - 1}(y)  =   { \tan}^{ - 1} \bigg( \frac{x + y}{1 - xy}  \bigg)}

EVALUATION

\displaystyle\sf{ { \tan}^{ - 1}(x - 1) +  { \tan}^{ - 1}(x) + { \tan}^{ - 1}(x + 1) =   { \tan}^{ - 1}(3x)}

\displaystyle\sf{ \implies { \tan}^{ - 1}(x - 1)  + { \tan}^{ - 1}(x + 1) =   { \tan}^{ - 1}(3x) -  { \tan}^{ - 1}(x)}

\displaystyle\sf{ \implies { \tan}^{ - 1} \bigg( \frac{x - 1 + x  + 1}{1 - ((x - 1)(x + 1))} \bigg)   = { \tan}^{ - 1} \bigg( \frac{3x   -  x }{1  + 3x.x} \bigg) }

\displaystyle\sf{ \implies { \tan}^{ - 1} \bigg( \frac{2x}{2 -  {x}^{2}} \bigg)   = { \tan}^{ - 1} \bigg( \frac{2x }{1  + 3 {x}^{2} } \bigg) }

\displaystyle\sf{ \implies \bigg( \frac{2x}{2 -  {x}^{2}} \bigg)   =  \bigg( \frac{2x }{1  + 3 {x}^{2} } \bigg) }

\displaystyle\sf{ \implies \: 2x \bigg( \frac{1}{2 -  {x}^{2}}  -  \frac{1 }{1  + 3 {x}^{2} } \bigg)  = 0}

Now 2x = 0 gives x = 0

Again

\displaystyle\sf{  \bigg( \frac{1}{2 -  {x}^{2}}  -  \frac{1 }{1  + 3 {x}^{2} } \bigg)  = 0 \:  \: gives}

\displaystyle\sf{ \implies \:  \frac{1}{2 -  {x}^{2}}   =  \frac{1 }{1  + 3 {x}^{2} }  \:  }

\displaystyle\sf{ \implies \: 1 + 3 {x}^{2} = 2 -  {x}^{2}    }

\displaystyle\sf{ \implies \: 4 {x}^{2} = 1}

\displaystyle\sf{ \implies \: {x}^{2} =  \frac{1}{4} }

\displaystyle\sf{ \implies \: x =  \pm \:  \frac{1}{2} }

FINAL ANSWER

Hence the required solution is

 \boxed{ \:  \: \displaystyle\sf{\: x=  -  \frac{1}{2} \:  ,\: 0 \:  ,\:  \frac{1}{2}  } \:  \: }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. tan⁻¹2 +tan⁻¹3 is..,Select Proper option from the given options.

(a) - π/4

(b) π/2

(c) 3π/4

(d) 3π/2

https://brainly.in/question/5596487

2. tan⁻¹(x/y)-tan⁻¹(x-y/x+y)=...(x/y≥0),Select Proper option from the given options.

(a) π/4

(b) π/3

(c) π/2

(d) π

https://brainly.in/question/5596504

Similar questions