Math, asked by tarunmittal2933, 1 year ago

If tan-1(x -1)/(x+2) + tan -1(x+1)/(x+2) =π/4 , then x is equal to

Answers

Answered by Pitymys
26

Use the identity,

 \tan ^{-1}a+\tan ^{-1}b=\tan ^{-1}(\frac{a+b}{1-ab})  .

Then the given equation is

 \tan ^{-1}(\frac{x-1}{x+2})+\tan ^{-1}(\frac{x+1}{x+2})=\tan ^{-1}(\frac{\frac{x-1}{x+2}+\frac{x+1}{x+2}}{1-\frac{x-1}{x+2}\frac{x+1}{x+2}}) =\frac{\pi}{4} \\<br />\frac{\frac{x-1}{x+2}+\frac{x+1}{x+2}}{1-\frac{x-1}{x+2}\frac{x+1}{x+2}}=\tan (\frac{\pi}{4})\\<br />

 \frac{2x(x+2)}{(x+2)^2-(x^2-1)}=1\\<br />\frac{2x(x+2)}{4x+5}=1\\<br />2x(x+2)=4x+5\\<br />2x^2=5\\<br />x=\pm \sqrt{\frac{5}{2}}<br />

The only admissible value is  x= \sqrt{\frac{5}{2}}

Similar questions