Math, asked by jotsanad, 22 days ago

If tan-1 (x+y)/(1-xy)=k show that dy/dx=-(1+y2)/(1+x2)

Answers

Answered by senboni123456
2

Step-by-step explanation:

We have,

 \tan ^{ - 1}  \bigg(  \frac{x + y}{1 -  xy} \bigg)  = k \\

  \implies \tan ^{ - 1} (x) + \tan ^{ - 1} (y)    = k \\

Differentiating both sides w.r.t x,

  \implies  \frac{1}{1 +  {x}^{2} } +  \frac{1}{1 +  {y}^{2} }  \frac{dy}{dx}     = 0 \\

  \implies   \frac{1}{1 +  {y}^{2} }  \frac{dy}{dx}     =  -  \frac{1}{1 +  {x}^{2} } \\

  \implies    \frac{dy}{dx}     =  -  \frac{1 +  {y}^{2} }{1 +  {x}^{2} } \\

Similar questions