Math, asked by nongkhlawwanri, 9 months ago

if tan=12/13 show that 2sin×cos/cos2-sin2=312/25​

Answers

Answered by Anonymous
10

 \huge \tt \: answer :  \\  \:  \\  \sf  \: given : \\  \\ tan =  \frac{12}{13}  =  \frac{adjecent \: side \: }{opposite \: side}  \\  \:  \:  \:  \\  \\  \bf \: {AC }^{2} ={BC }^{2} +{AB }^{2}  =  \sqrt{ {13}^{2} +  {12}^{2}  }  =  \sqrt{144 + 169}  =  \sqrt{313}  \\  \\ now \\  \\LHS \\  \\  \:  AC =  \sqrt{313}  \\ BC = 13 \\ AB = 12 \\  \\  \: then \:  \\  \tt \huge :  \longmapsto \:  \frac{2 \: sin \:  \times  \: cos}{ {cos}^{2}  -  {sin}^{2} }  \\  \\ \tt \huge :  \longmapsto \: \frac{2 \times  \frac{13}{ \sqrt{313}  }  \times  \frac{12}{ \sqrt{313} } }{ {( \frac{12}{ \sqrt{313} } )}^{2} -  {( \frac{13}{ \sqrt{313} }) }^{2}  }  \\  \\ \tt \huge :  \longmapsto \: \frac{ \frac{26}{ \sqrt{313} } \times  \frac{12}{ \sqrt{313} }  }{ \frac{144}{313}  -  \frac{169}{313} }  \\  \\ \tt \huge :  \longmapsto \: \frac{ \frac{312}{313} }{ \frac{25}{313} }  \\  \\ \tt \huge :  \longmapsto \: \frac{312}{25}

Hence proved

LHS=RHS

Similar questions