Math, asked by cricketputup7tpjx, 10 months ago

if tan 15°=x the probe that
 {x}^{2} + 2 \sqrt{3} x - 1=0

Answers

Answered by Anonymous
13

\Huge{\underline{\underline{\blue{\mathfrak{Answer :}}}}}

\Large{\sf{Given :}}

Value of tan 15° = x

\rule{200}{2}

\LARGE{\sf{To \: Find  :}}

⇒ x² + 2√3x - 1

\rule{200}{2}

\LARGE{\sf{Solution :}}

We know that,

\LARGE{\boxed{\boxed{\green{\tt{tan \: 15 ^{\circ} \: = \: 2 - \sqrt{3}}}}}}

(Putting Values)

 \sf{(2 -  { \sqrt{3}) }^{2} + 2 \sqrt{3}(2 -  \sqrt{3}) - 1 = 0   }

Using Identity :-

\large{\boxed{\boxed{\orange{(a - b)^2 = a^2 + b^2 + 2ab}}}}

 ⇒\sf{4  +  3  -  \cancel{ 4 \sqrt{3} } +  \cancel{4 \sqrt{3}}  - 6 - 1 = 0} \\  \\  ⇒ \sf{ \cancel7 -  \cancel7 = 0} \\  \\  ⇒ \sf{ 0= 0}

\Large{\boxed{\red{\sf{Hence \: proved}}}}

Answered by Rudra0936
14

Given :

 \bold \green{tan \: 15 \degree = x}

We need to find the value of the equation

By using this ✓

We know

   \boxed{\boxed{\huge \blue{tan15 \degree = 2 -  \sqrt{3}}}}

So

  \boxed{\bold{x = 2 -  \sqrt{3} }}

So let out the value of X in the equation so as to find the value ✓

  =  > x ^{2}  + 2 \sqrt{3} -1 \\  \\  =  > (2 -  \sqrt{3} )^{2}  + 2 \sqrt{3} (2 -  \sqrt{3} ) - 1  \\  \\  =  >2 ^{2}  +   (\sqrt{3} )^{2}  - 2 \times 2 \sqrt{3}  + 4 \sqrt{3}  - 2 \times 3 - 1  \\  \\  =  > 4 + 3 - 4 \sqrt{3} + 4 \sqrt{3}  - 6 - 1  \\  \\  =  > 7 - 7 \\  \\  =  > 0

    \boxed{\boxed{\red{\huge{hence \: proved}}}}

Similar questions