If tan =1and sinB ==1/root2 find the value of cos(A +B) where A,B are acute angles
Answers
Answered by
3
Step-by-step explanation:
cos(A+B) = ??????
formula
cos(A+B) = cosAcosB - sinAsinB
Given:
sinB = 1/√2
formula
cosB = √(1-sin^2B)
cosB = √{1-(1/√2)^2}
cosB = √(1-1/2)
cosB = 1/√2
tanA = 1
now
tanA = sinA/cosA
sinA/cosA = 1
sinA = cosA
cos(A+B) = cosAcosB - sinAsinB
cos(A+B) = sinA×1/√2 - sinA×1/√2
cos(A+B) = sinA/√2 - sinA/√2
cos(A+B) = 0
Answered by
1
Step-by-step explanation:
tan A= 1
tan 45°= 1
sin B = 1/ root 2
sin 45° = 1/ root 3
cos (45°+45°) = 0
Similar questions