If tan θ = √2 − 1, evaluate sin θ . cos θ
Answers
Answered by
0
Answer:
(1 – cos2 A) cosec2 A = 1
Solution:
Taking the L.H.S,
(1 – cos2 A) cosec2 A
= (sin2 A) cosec2 A [∵ sin2 A + cos2 A = 1 ⇒1 – sin2 A = cos2 A]
= 12
= 1 = R.H.S
– Hence Proved
Similar questions