Math, asked by mansi147319, 24 days ago

If tan^2 θ − 3 tan θ + 1 = 0, find the value of tan θ + cot θ

Answers

Answered by butterly095
32

Answer:

Step-by-step explanation:
I'm using @ for theta.

Let's rewrite write the equation in terms of sin@ and cos@.

tan^{2}@  -3tan@ + 1 =0

\frac{sin^{2}@}{cos^{2}@} -3\frac{sin}{cos} +1 = 0

\frac{sin^{2}@}{cos^{2}@} -3\frac{sin}{cos} = -1

Taking sin/cos from both terms, we get

\frac{sin}{cos} (\frac{sin@}{cos@} -3)= -1

Multiplying both sides by cos/sin

1(\frac{sin@}{cos@} -3)= -\frac{cos}{sin}

\frac{sin@}{cos@} +\frac{cos}{sin}  = 3

We can write the above equation as:
tan @ + cot@ = 3

Hence, tan + cot = 3

This is my first answer, hope it helps ☺️.

Answered by Dhruv4886
0

The value of tan θ + cot θ = 3

Given:

tan² θ − 3 tan θ + 1 = 0


To find:

Find the value of tan θ + cot θ  


Solution:

The expression is tan² θ − 3 tan θ + 1 = 0  


=> [sin θ/cos θ]² − 3[ sin θ/cosθ ] = - 1    [ ∵ tan θ = sin θ/cos θ ]  


=> sin θ/cos θ [ sin θ/cos θ] − 3 = - 1   [ take sin θ/cos θ common ]


=> [ sin θ/cos θ] − 3 = - 1 [ cos θ/sin θ ]  


=> [ sin θ/cos θ] − 3 = - cos θ/sin θ


=> [ sin θ/cos θ] + [ cos θ/sin θ ] = 3  


=> tan θ + cot θ = 3   [ ∵ cos θ/sin θ = cot θ ]

Therefore,

The value of tan θ + cot θ = 3  

Learn more at

https://brainly.in/question/5410984  

#SPJ2

Similar questions