History, asked by dghhhjjhjkkhf, 9 months ago

If tan 2 3 θ= − , then prove that tan3

θ + cot3

θ – 2 = 50​

Answers

Answered by abbashabbirtinwala
2

Answer:

option b :- Ø -2=50

Explanation:

because if we prove it it may we give this answer

Answered by vdivyanshu2006
0

Explanation:

Answer:

Proof is given below...

Step-by-step explanation:

\begin{gathered}\tan\theta=2-\sqrt3\\\\L.H.S\\=\tan^3\theta+\cot^3\theta-2\\=\tan^3\theta+\frac{1}{\tan^3\theta}-2\\\\=\frac{\tan^6\theta-2\tan^3\theta+1}{\tan^3\theta}\\\\=\frac{(\tan^3\theta)^2-2(\tan^2\theta)(1)+1^2}{\tan^3\theta}\\\\=\frac{(\tan^3\theta-1)^2}{\tan^3\theta}\\\\=\frac{[(2-\sqrt3)^3-1]^2}{(2-\sqrt3)^3}\\\\=\frac{[8-3\sqrt3-3(4)(\sqrt3)+3(2)(3)-1]^2}{8-3\sqrt3-3(4)(\sqrt3)+3(2)(3)}\\\\=\frac{(8-3\sqrt3-12\sqrt3+18-1)^2}{8-3\sqrt3-12\sqrt3+18}\\\\=\frac{(25-15\sqrt3)^2}{26-15\sqrt3}\\\end{gathered}

tanθ=2−

3

L.H.S

=tan

3

θ+cot

3

θ−2

=tan

3

θ+

tan

3

θ

1

−2

=

tan

3

θ

tan

6

θ−2tan

3

θ+1

=

tan

3

θ

(tan

3

θ)

2

−2(tan

2

θ)(1)+1

2

=

tan

3

θ

(tan

3

θ−1)

2

=

(2−

3

)

3

[(2−

3

)

3

−1]

2

=

8−3

3

−3(4)(

3

)+3(2)(3)

[8−3

3

−3(4)(

3

)+3(2)(3)−1]

2

=

8−3

3

−12

3

+18

(8−3

3

−12

3

+18−1)

2

=

26−15

3

(25−15

3

)

2

=

26−15

3

625+225(3)−2(25)(15

3

)

=

26−15

3

625+675−750

3

=

26−15

3

1300−750

3

=

26−15

3

50(26−15

3

)

=50=R.H.S.

∴ proved.

Hope it helps!

Similar questions