Math, asked by Anonymous, 1 year ago

If Tan^2 45° -cos^2 30°=>x sin45°cos45°,then find x​

Answers

Answered by Anonymous
8

Answer:

L. H. S = tan^2 45° - cos^2 30° = 1 - (root {3}/2)^2

=> 1 - 3 /4

=> 1/4

R. H. S = x ( 1/root {2})(1/root{2})

= x ( 1/2)

Given, 1/4 = x/2

x = 1/2

Answered by Anonymous
24

SOLUTION:-

Given,

tan {}^{2} 45 \degree - cos {}^{2} 30 \degree = xsin45  \degree \: cos45 \degree

The value of:

tan45°= 1

cos30°= √3/2

sin45°= 1/√2

cos45°=1/√2

So,

 =  > (1) {}^{2}  - ( \frac{ \sqrt{3} }{2} ) {}^{2}  = x( \frac{1}{ \sqrt{2} }) \times ( \frac{1}{ \sqrt{2} }  ) \\  \\  =  > 1 -  \frac{3}{4}  =  \frac{x}{2}   \\  \\  =  > \frac{4 - 3}{4}  =  \frac{x}{2}  \\  \\  =  >  \frac{1}{4}  =  \frac{x}{2}  \\  \\  =  > 4x = 2 \:   \:  \: \:  \: [cross \:  \: multiplication] \\  \\  =  > x =  \frac{2}{4}  \\  \\   =  > x =  \frac{1}{2}

hope it helps ☺️

Similar questions