Math, asked by irfu25mar2005, 10 months ago

If tan^2 theta-5tan theta +1=0,then find the value of tan^2+ cot^2

Answers

Answered by MaheswariS
3

\textbf{Given:}

tan^2\theta-5\,tan\,\theta+1=0

\textbf{To find:}

\text{The value of $tan^2\theta+cot^2\theta$}

\textbf{Solution:}

\text{Consider,}

tan^2\theta+cot^2\theta

\text{Using the identity,}

\boxed{\bf\,a^2+b^2=(a+b)^2-2\,ab}

=(tan\theta+cot\theta)^2-2\,tan\theta\,cot\theta

=(tan\theta+\dfrac{1}{tan\theta})^2-2\,tan\theta(\dfrac{1}{tan\theta})

=(\dfrac{tan^2\theta+1}{tan\theta})^2-2

\text{Using,}\;\;\bf\,tan^2\theta+1=5\,tan\theta

=(\dfrac{5\,tan\theta}{tan\theta})^2-2

=(\dfrac{5}{1})^2-2

=25-2

=23

\textbf{Answer:}

\textbf{The value of $\bf\,tan^2\theta+cot^2\theta$ is 23}

Find more:

If tan theta +cot theta=4,find value of tan4theta+cot4theta.

https://brainly.in/question/8129767

Sectheta + tantheta = p , show that sectheta - tantheta = 1/p. Hence , find the values of costheta and sintheta

https://brainly.in/question/15396720

Similar questions