Math, asked by Abhithegamer, 11 months ago

If tan =20/21 show that. (1-sin+cos)/(1+sin+cos)=3/7

Qno 11.

Attachments:

Answers

Answered by snehabharti20
18

{\underline{\sf{Given}}}

If tanx = 20/21

{\underline{\sf{To\:Prove}}}

 \sf \dfrac{1  -  \sin \: x +  \cos \: x}{1  +  \sin \: x  +  \cos \: x }  =  \dfrac{3}{7}

{\underline{\sf{Solution}}}

We have tanx = 20/21..(1)

 \sf \implies \sec \: x =  \sqrt{1 +  \tan {}^{2}x }  =  \sqrt{1 +  (\frac{20}{21} ){}^{2}  }

 \sf =  \sqrt{ \dfrac{841}{441} }  =  \dfrac{29}{21} ...(2)

\rule{200}2

   \sf \: LHS = \dfrac{1  -  \sin \: x +  \cos \: x}{1  +  \sin \: x  +  \cos \: x }

Now divide numerator and denominator by cos x

  \sf =  \dfrac{ \frac{1}{ \cos \:x}  -   \frac{ \sin \: x}{ \cos \: x} +  \frac{ \cos \: x}{ \cos \: x}   }{ \frac{1}{ \cos \:x}   +    \frac{ \sin \: x}{ \cos \: x} +  \frac{ \cos \: x}{ \cos \: x}}

 \sf =  \dfrac{ \sec \: x -  \tan \: x + 1}{ \sec \: x +   \tan \: x + 1}

Now put the values of secx and tan x

 \sf =  \dfrac{ \frac{29}{21}  -  \frac{20}{21}  + 1}{\frac{29}{21}   + \frac{20}{21}  + 1}

 \sf =  \dfrac{30}{70}

 \sf =  \dfrac{3}{7}

 \sf = RHS

Hence proved !

Similar questions