If tan 20° = p, prove that =
Answers
Answered by
86
tan610° = tan(720° - 110°) = -tan110°
= -tan(90° + 20°) = cot20° = 1/tan20° = 1/p
tan700° = tan(720° - 20°) = -tan20° = -p
tan560° = tan(360° + 200°) = tan200°
= tan(180° + 20°) = tan20° = p
tan470° = tan(360° + 110°) = tan110°
= tan(90° + 20°) = -cot20° = -1/tan20° =- 1/p
now, LHS = (tan610° + tan700°}/(tan560° - tan470°)
= (1/p - p)/(p + 1/p)
= (1 - p²)/(p² + 1)
= (1 - p²)/(1 + p²) = RHS
= -tan(90° + 20°) = cot20° = 1/tan20° = 1/p
tan700° = tan(720° - 20°) = -tan20° = -p
tan560° = tan(360° + 200°) = tan200°
= tan(180° + 20°) = tan20° = p
tan470° = tan(360° + 110°) = tan110°
= tan(90° + 20°) = -cot20° = -1/tan20° =- 1/p
now, LHS = (tan610° + tan700°}/(tan560° - tan470°)
= (1/p - p)/(p + 1/p)
= (1 - p²)/(p² + 1)
= (1 - p²)/(1 + p²) = RHS
Answered by
35
HELLO DEAR,
GIVEN:- tan60° = p
we know:-
tan700° = tan(720° - 20°) = -tan20° = -p
tan610° = tan(720° - 110°) = -tan110°
= -tan(90° + 20°) = cot20° = 1/tan20° = 1/p
tan560° = tan(360° + 200°) = tan200°
= tan(180° + 20°) = tan20° = p
tan470° = tan(360° + 110°) = tan110°
= tan(90° + 20°) = -cot20° = -1/tan20° =- 1/p
now,
(tan610° + tan700°}/(tan560° - tan470°)
=> (1/p - p)/(p + 1/p)
=> (1 - p²)/(p² + 1)
=> (1 - p²)/(1 + p²)
I HOPE IT'S HELP YOU DEAR,
THANKS
GIVEN:- tan60° = p
we know:-
tan700° = tan(720° - 20°) = -tan20° = -p
tan610° = tan(720° - 110°) = -tan110°
= -tan(90° + 20°) = cot20° = 1/tan20° = 1/p
tan560° = tan(360° + 200°) = tan200°
= tan(180° + 20°) = tan20° = p
tan470° = tan(360° + 110°) = tan110°
= tan(90° + 20°) = -cot20° = -1/tan20° =- 1/p
now,
(tan610° + tan700°}/(tan560° - tan470°)
=> (1/p - p)/(p + 1/p)
=> (1 - p²)/(p² + 1)
=> (1 - p²)/(1 + p²)
I HOPE IT'S HELP YOU DEAR,
THANKS
Similar questions