If tan 22 +tan 38 +√3=k tan22 tan 38 then k=
Answers
Answer:
The value of k is 1.35455264.
Given Data:
Tan 22° + Tan 38° – root 3 = k Tan 22°. Tan38°
To Find:
Calculate the value of k.
Step-By-Step Explanation:
Step 1:
The equation as tan (22 \tan (38))tan(22tan(38))
=\tan (22+\tan (38-\sqrt{3})) \{ktan}(22 \tan (38))=\tan (22+\tan (38-3))
\begin{gathered}\begin{aligned} \{ktan}(22 \tan (38)) &=\tan (22+\tan (38-\sqrt{3})) \{ktan}(22 \tan (38)) \\ &=\tan (22+\tan (38-3)) \end{aligned}\end{gathered}
Step 2:
Evaluate\tan (38) \tan (38)tan(38)tan(38)
\begin{gathered}\begin{aligned} \{ktan}(22 \cdot 0.78128562) &=\tan (22+\tan (38-\sqrt{3})) \{ktan}(22 \cdot 0.78128562) \\ &=\tan (22+\tan (38-3)) \end{aligned}\end{gathered}
Step 3:
Multiply 2222 by 0.781285620.78128562.
\begin{gathered}\begin{aligned} k \tan (17.18828378) &=\tan (22+\tan (38-\sqrt{3})) k \tan (17.18828378) \\ &=\tan (22+\tan (38-3)) \end{aligned}\end{gathered}
ktan(17.18828378)
=tan(22+tan(38−
3
))ktan(17.18828378)
=tan(22+tan(38−3))
Divide each term by tan (17.18828378) tan (17.18828378) and simplify.
Step 4:
\begin{aligned} k=\tan (22.73371214) \cot (17.18828378) k & =&\tan (22.73371214) \cot (17.18828378) \end{aligned}
k=tan(22.73371214)cot(17.18828378)k
=
tan(22.73371214)cot(17.18828378)
The result can be shown in multiple forms.
Step 5:
Exact Form:
k=tan (22.73371214) cot (17.18828378) k=tan (22.73371214) cot (17.18828378)k=tan(22.73371214)cot(17.18828378)k=tan(22.73371214)cot(17.18828378)
Step 6:
Result:
Decimal Form:
The value of k=1.35455264.
MAKE me BRAINLIST