Math, asked by albmusiccopmany, 8 months ago

if tan 2A = (A-18), where 2A is an acute angle, find the value of A

Answers

Answered by ThakurRajSingh24
18

 \dag \: { \underline{ \red{ \tt{Answer :-}}}}

A = 36°

 \dag \: { \underline{ \blue{ \tt{Solution:-}}}}

As we know that,

\tt\longrightarrow cot(90 - x) = tan \: x \\ \\    \tt °.° \:  \:  \:  \green{ tan  \: 2A = cot ( A - 18)} \\ \\   \tt \longrightarrow cot(90 - 2A) = cot(A - 18) \\ \\  \tt \longrightarrow  \cancel{cot}(90 - 2A) =  \cancel{cot}(A - 18) \\  \\ \tt \longrightarrow90 - 2A = A - 18 \\  \\ \tt \longrightarrow - 2A - A =  - 18- 90 \\  \\ \tt \longrightarrow -3A =  - 108 \\  \\  \tt \longrightarrow  \cancel - 3A =  \cancel  - 108 \\  \\ \tt \longrightarrow  A =  \frac{ \cancel{108}}{ \cancel3}  \\  \\ \tt \longrightarrow  \red{ A = 36°}

Therefore, the value of A is 36°.

Answered by ITZINNOVATIVEGIRL588
3

\huge\boxed{\fcolorbox{white}{pink}{Answer}}

Given tan2A=cot(A−180)

⇒cot(90−2A)=cot(A−180)[∵tanθ=cot(90−θ)]

Comparing angles we get

90−2A=A−18

⇒90+18=A+2A

⇒3A=108

⇒A=108/3

⇒A=36∘

Similar questions