if tan 2A=(A-18)where 2A is an acute angle find the value of A
Answers
Answered by
5
tan2A=(A-18)
tan2A=tan (90-A+18)
2A=-A+108
3A=108
A=36
tan2A=tan (90-A+18)
2A=-A+108
3A=108
A=36
Answered by
3
Solution:
It is given that tan2A=cot(A−18°)
⇒tan2A=cot(90° −(108° −A))
⇒tan2A=tan(108° −A)
{°•° cot(90° −A)=tan(A)}
⇒2A=108° −A
⇒3A=108°
⇒A=108°/3 =36°
Thanks ☺
Similar questions