Math, asked by ansarializa2005, 10 months ago

If tan(2A+B)=root3 and cot(3A-B)=root3. Find A and B

Answers

Answered by vbhai97979
85

Answer:

tan(2a+b)=√3

tan(2a+b)= tan60

2a+b=60-----1

cot(3a-b) =√3

cot(3a-b) =cot30

3a-b=30------2

2a+b=60

(+) 3a-b=30

5a=90

a=90/5=18

2a+b=60

2(18)+b=60

b=60-36

b=24

Step-by-step explanation:

BTS ARMY

Answered by Anonymous
55

Answer:-

\sf{The \ value \ of \ A \ and \ B \ are \ 18 \ and}

\sf{24 \ respectively.}

Given:

  • tan(2A+B)=√3

  • cot(3A-B)=✓3

To find:

.

  • Value of A and B.

Solution:

\sf{According \ to \ the \ first \ condition.}

\sf{tan(2A+B)=\sqrt3}

\sf{But, \ we \ know \ tan60^\circ=\sqrt3}

\sf{\therefore{2A+B=60...(1)}}

\sf{According \ to \ the \ second \ condition.}

\sf{cot(3A-B)=\sqrt3}

\sf{But, \ we \ know \ tan30^\circ=\sqrt3}

\sf{\therefore{3A-B=30...(2)}}

\sf{Add \ equations (1) \ and \ (2), \ we \ get}

\sf{2A+B=60}

\sf{+}

\sf{3A-B=30}

____________________

\sf{5A=90}

\sf{\therefore{A=\frac{90}{5}}}

\boxed{\sf{\therefore{A=18}}}

\sf{Substitute \ A=18 \ in \ equation (1)}

\sf{2(18)+B=60}

\sf{\therefore{36+B=60}}

\sf{\therefore{B=60-36}}

\boxed{\sf{\therefore{B=24}}}

\sf\purple{\tt{\therefore{The \ value \ of \ A \ and \ B \ are \ 18 \ and}}}

\sf\purple{\tt{24 \ respectively.}}

Similar questions