Math, asked by vijaybhaskar884, 9 months ago

if tan 2A = cot (A-18•) ,where 2A is an acute angle then find the value of A​

Attachments:

Answers

Answered by Umairaum
0

ANSWER

Given tan2A=cot(A−18

0

)

⇒cot(90−2A)=cot(A−18

0

)[∵tanθ=cot(90−θ)]

Comparing angles we get

90−2A=A−18

⇒90+18=A+2A

⇒3A=108

⇒A=

3

108

⇒A=36

Answered by sourya1794
17

Given :-

  • tan 2A = cot (A - 18°)

  • 2A is an acute angle

To find :-

  • The value of A.

Solution :-

\rm\:tan\:2A=cot(A-18\degree)

\rm\longrightarrow\:cot(90-2A)=cot(A-18)

\rm\longrightarrow\:90-2A=A-18

\rm\longrightarrow\:90+18=A+2A

\rm\longrightarrow\:108=3A

\rm\longrightarrow\:\cancel\dfrac{108}{3}=A

\rm\longrightarrow\:A=36\degree

Hence,the value of A is 36°.

\underbrace{\bf\:More\:Information}

Trigonometry :- It is that branch of mathematics which deals with the measurement of angles and the problems allied with angles.

Some trigonometric identities

  • Sin²θ + cos²θ = 1

  • 1 + tan²θ = sec²θ

  • 1 + cot²θ = cosec²θ

  • tanθ = sinθ/cosθ

  • cotθ = cosθ/sinθ

  • tanθ × cotθ = 1
Similar questions