If tan 2A = cot (A - 18°), where 2A is an acute angle , find the value of
“A
Answers
Answered by
11
EXPLANATION.
tan2A = cot(A - 18°).
2A is an acute angles.
As we know that,
We can write equation as,
⇒ cot(90° - 2A) = cot(A - 18°).
⇒ 90° - 2A = A - 18°.
⇒ 90° + 18° = A + 2A.
⇒ 108° = 3A.
⇒ A = 108°/3.
⇒ A = 36°.
MORE INFORMATION.
Trigonometric sign functions.
(1) = sin(-θ) = -sinθ.
(2) = cos(-θ) = cosθ.
(3) = tan(-θ) = -tanθ.
(4) = cosec(-θ) = -cosecθ.
(5) = sec(-θ) = secθ.
(6) = cot(-θ) = -cotθ.
Answered by
6
Attachments:
Similar questions