If tan 2A = cot(A-18°),where 2A is an acute angle .Find the value of A
Answers
Answered by
7
Given that
tan 2A = cot(A-18°)
⇒ tan 2A = tan[π/2-(A-18°)] [ since tan(π/2-Ф)=cotФ ]
⇒ 2A = π/2-(A-18°)
⇒ 2A = π/2-A+18°
⇒ 3A = 90°+18°
⇒ 3A = 108°
⇒ A = 108°/3
⇒ A = 36°
Answered by
6
Answer: answer is 36°
Step-by-step explanation:given, tan 2A= cot(A-18°)
tan 2A = cot(A-18°)
but, tan 2A can be also written as cot (90° - 2A){TRIGONOMETRIC RATIOS}
∴, cot(90°-2A) = cot(A-18°)
∴ 90°-2A = A-18°
∴ 3A = 108°
A = 108\3
= 36°
#HOPEITHELPS
Similar questions