Math, asked by apereira26391, 9 months ago

If tan 2tita = cot(tita +6°) then tita =_________

Answers

Answered by amitkumar44481
3

AnsWer :

theta = 28°

SolutioN :

 \tt \: if \: tan2 \theta = cot( \theta + 6)

We know that.

 \tt  \dagger \:  \:  \:  \:  \: tan( 90 - \theta ) = cot \theta.

Substitute the value of tan theta as place of cot theta.

 \tt  : \implies tan2 \theta = tan(90 - ( \theta + 6))

 \tt  : \implies 2 \theta =(90 - \theta   -  6)

 \tt  : \implies 3\theta = 84.

 \tt  : \implies \theta = \dfrac{ \cancel{84}}{ \cancel3}.

 \tt  : \implies \theta =28.

Therefore, the value of theta is 28°.

Some More FormulA :

 \tt  \dagger \:  \:  \:  \:  \: sin( 90 - \theta ) = cos \theta.

 \tt  \dagger \:  \:  \:  \:  \: cos( 90 - \theta ) = sin \theta.

 \tt  \dagger \:  \:  \:  \:  \: tan( 90 - \theta ) = cot \theta.

 \tt  \dagger \:  \:  \:  \:  \: cot( 90 - \theta ) = tan \theta.

Answered by BrainlyPopularman
5

Question :

▪︎ If  \:  \: { \bold{ \tan(2 \theta)  = \cot( \theta + {6}^{ \circ})  }}  \:  \: then  \:  \: { \bold{  \theta = ? }}  \:  \:

ANSWER :

  \\ \longrightarrow  \large { \pink{ \boxed{ \bold{ \theta  = {28}^{ \circ}  }}}}  \:  \:  \\

EXPLANATION :

 \\  \bigstar \:  \:   \: {  \red{ \boxed{ \bold{ \tan( \theta) =  \cot({90}^{ \circ} -  \theta  )  }}}}  \:  \:  \\

• So that –

  \\ \implies  \: { \bold{ \cot( {90} ^{ \circ}    - 2 \theta)  = \cot( \theta + {6}^{ \circ})  }}  \:  \:  \\

  \\ \implies  \: { \bold{ {90}^{ \circ}    - 2 \theta  =  \theta + {6}^{ \circ}  }}  \:  \:  \\

  \\ \implies  \: { \bold{ {90}^{ \circ}    -  {6}^{ \circ}  =  \theta  + 2 \theta  }}  \:  \:  \\

  \\ \implies  \: { \bold{ {84}^{ \circ}    = 3 \theta   }}  \:  \:  \\

  \\ \implies  \: { \bold{  \theta =  \dfrac{ \: {84}^{ \circ}}{3} }}  \:  \:  \\

  \\ \implies  \large { \pink{ \boxed{ \bold{ \theta  = {28}^{ \circ}  }}}}  \:  \:  \\

Other important formulas :

 \\  \bigstar \:  \:   \: {  \red{{ \bold{ \sin( \theta) =  \cos({90}^{ \circ} -  \theta  )  }}}}  \:  \:  \\

 \\  \bigstar \:  \:   \: {  \red{{ \bold{ \cos( \theta) =  \sin({90}^{ \circ} -  \theta  )  }}}}  \:  \:  \\

 \\  \bigstar \:  \:   \: {  \red{{ \bold{ \tan( \theta) =  \cot({90}^{ \circ} -  \theta  )  }}}}  \:  \:  \\

 \\  \bigstar \:  \:   \: {  \red{{ \bold{ \cot( \theta) =  \tan({90}^{ \circ} -  \theta  )  }}}}  \:  \:  \\

 \\  \bigstar \:  \:   \: {  \red{{ \bold{ \sec( \theta) =  cosec({90}^{ \circ} -  \theta  )  }}}}  \:  \:  \\

 \\  \bigstar \:  \:   \: {  \red{{ \bold{ cosec( \theta) =   \sec({90}^{ \circ} -  \theta  )  }}}}  \:  \:  \\

Similar questions