Math, asked by ThumaraBF, 3 months ago

If tan =3/4 , find the value of 3sin +2cos /3sin - 2cos​

Answers

Answered by sohamdewri
0

Answer:

odisha avval pal pal pal pal paliyakalan karyakartao all

Answered by Anonymous
5

17

Step-by-step explanation:

Given: tan\theta =\frac{3}{4}

To find: Value of \frac{3\:sin+2\:cos}{3\:sin-2\:cos}

Solution:

tan\theta =\frac{3}{4}

\implies \frac {Perpendicular}{Base}=\frac{3x}{4x}

Now, using Pythagoras's theorem;

(Hypotenuse)² = (Perpendicular)² + (Base)²

(Hypotenuse)² = (3x)² + (4x)²

= 9x² + 16x²

= 25x²

Hypotenuse = √25x²

\implies Hypotenuse = 5x

Now,  sin\theta = \frac{Perpendicular}{Hypotenuse}=\frac{3x}{5x}={3}{5}

cos\theta = \frac{Base}{Hypotenuse}=\frac{4x}{5x}=\frac{4}{5}

\frac{3\: sin\theta+ 2\:cos\theta}{3\:sin\theta-2\:cos\theta}

Putting values;

\implies \frac{3(\frac{3}{5})+2(\frac{4}{5})}{3(\frac{3}{5})-2(\frac{4}{5})}

\implies \frac{\frac{9}{5}+\frac{8}{5}}{\frac{9}{5}-\frac{8}{5}}

\implies \frac{\frac{17}{5}}{\frac{1}{5}}

\implies \frac{17}{5}\times \frac{5}{1}

 = 17

Similar questions