Math, asked by varities4466, 8 months ago

If tan=3/4and A+B=90 then find cotB

Answers

Answered by tahseen619
4

Cot B = 3/4

Step-by-step explanation:

Given:

Tan A = 3/4

A + B=90

A = 90 - B

Solution:

TanA = 3/4

Tan (90 - B) = 3/4

Cot B = 3/4

Answered by Anonymous
8

\huge\pink{\underline{\mathbb{ANSWER}}}

cot \: B =  \frac{3}{4}

 \huge{ \red{ \bold{ \underline{ \underline{Given:-}}}}}

  • tan \: A \:  =  \frac{3}{4}
  • a + b = 90 {}^{o}

 \huge{ \purple{ \bold{ \underline{ \underline{TO     Find:-}}}}}

what is the value of cot B ?

\huge\pink{\underline{\mathbb</strong><strong>{</strong><strong>S</strong><strong>O</strong><strong>L</strong><strong>U</strong><strong>T</strong><strong>I</strong><strong>O</strong><strong>N</strong><strong>}}}

In ΔABC

∠A+∠B+∠C=180° (Angle sum property of triangle)

Since we are given that ∠A+∠B =90°

So, 90°+∠C=180°

∠C=180°-90°

∠C=90°

So,  ΔABC is a right angled triangle at C

So,

tan \: θ =  \frac{Perpendicular}{Base}

We are given that  

=>tan \: A \:  =  \frac{3}{4}

So, on comparing

For ∠A

Base = 3

Perpendicular =4

=>cot \: θ =  \frac{Base}{Prependicular}

=>cot \: B =  \frac{3}{4}

Attachments:
Similar questions