Math, asked by harshbarot, 3 months ago

if tan =√3. find the all the T.ratio

Answers

Answered by user0888
3

Answer for students for class 10.

All trigonometric ratios for θ if \sf{tan\:\theta=\sqrt{3} \:(2n\pi \leq \theta\leq \dfrac{\pi }{2} +2n\pi )}

  • \sf{sin\:\theta=\dfrac{\sqrt{3} }{2}  }, \sf{cos\:\theta=\dfrac{1}{2} }, \sf{tan\:\theta=\sqrt{3} } (Basic Ratios)
  • \sf{csc\:\theta=\dfrac{2}{\sqrt{3} } }, \sf{sec\:\theta=2}, \sf{cot\:\theta=\dfrac{1}{3} } (Inverse Ratios)

Answer for students over class 10.

All trigonometric ratios for θ if \sf{tan\:\theta=\sqrt{3} \:(\pi +2n\pi\leq \theta\leq \dfrac{3}{4} \pi+2n\pi)}

  • \sf{sin\:\theta=-\dfrac{\sqrt{3} }{2}  }, \sf{cos\:\theta=-\dfrac{1}{2} }, \sf{tan\:\theta=\sqrt{3} } (Basic Ratios)
  • \sf{csc\:\theta=-\dfrac{2}{\sqrt{3} } }, \sf{sec\:\theta=-2}, \sf{cot\:\theta=\dfrac{1}{3} } (Inverse Ratios)

Let's find the values using trigonometric identities.

We know that \sf{sin^2\:\theta+cos^2\:\theta=1}.

Let's divide both sides by \sf{cos^2\:\theta}.

\implies\sf{\dfrac{sin^2\:\theta}{cos^2\:\theta}+\dfrac{cos^2\:\theta}{cos^2\:\theta}=\dfrac{1}{cos^2\:\theta} }

\implies\sf{tan^2\:\theta+1=\dfrac{1}{cos^2\:\theta} }

Given \sf{tan\:\theta=\sqrt{3} }

\implies\sf{(\sqrt{3} )^2+1=\dfrac{1}{cos^2\:\theta} }

\implies\sf{4=\dfrac{1}{cos^2\:\theta}}

\implies\sf{cos^2\:\theta=\dfrac{1}{4} \:(0\leq cos\:\theta\leq 1)}

Therefore cosine is \dfrac{1}{2}.

Let's find sine value using the identity.

\sf{sin^2\:\theta+cos^2\:\theta=1}

\implies\sf{sin^2\:\theta+(\dfrac{1}{2} )^2=1}

\implies\sf{sin^2\:\theta=\dfrac{3}{4} \:(0\leq sin\:\theta\leq 1)}

Therefore sine is \dfrac{\sqrt{3} }{2}.

The cosecant, secant, and cotangent values are multiplicative inverses of sin θ, cos θ, and tan θ.

More information:

Common mistakes?

We take \sf{sin^2\:\theta=(sin\:\theta)^2}, but don't take \sf{sin^{-1}\:\theta=\dfrac{1}{sin\:\theta} }. The inverse function is not a multiplicative inverse.

Trigonometric identity?

\sf{a^2+b^2=c^2} (Pythagoras Theorem)

\implies\sf{\dfrac{a^2}{c^2} +\dfrac{b^2}{c^2} =\dfrac{c^2}{c^2} }

\implies\sf{(\dfrac{a}{c} )^2+(\dfrac{b}{c} )^2=1}

The two values are either sine or cosine. From this, we get a trigonometric identity below.

\therefore\sf{sin^2\:\theta+cos^2\:\theta=1}

Similar questions