If tan θ = 3, then 4sinθ−cosθ/4sinθ+cosθ is equal to
Answers
Given data:
To find:
The value of
Step-by-step explanation:
- To find the value of the fraction, we divide both the numerator and the denominator by and convert the fraction into a fraction containing only terms.
- Remember that,
Now,
- since
- since where is not zero
- since
- since
Answer:
Read more on Brainly.in
If sinθ = cos(2θ - 45°) then value of tanθ ...
- https://brainly.in/question/14287600
If tanA = x/y, prove
m sinA+ n cosA = √(m² + n²)
- https://brainly.in/question/15817313
Given data:
To find:
Step-by-step explanation:
terms.
Remember that, cos\theta\neq 0cosθ=0
Now, \dfrac{4\:sin\theta-cos\theta}{4\:sin\theta+cos\theta}4sinθ+cosθ4sinθ−cosθ
=\dfrac{\dfrac{4\:sin\theta-cos\theta}{cos\theta}}{\dfrac{4\:sin\theta+cos\theta}{cos\theta}}=cosθ4sinθ+cosθcosθ4sinθ−cosθ
since cos\theta\neq 0cosθ=0
=\dfrac{\dfrac{4\:sin\theta}{cos\theta}-\dfrac{cos\theta}{cos\theta}}{\dfrac{4\:sin\theta}{cos\theta}+\dfrac{cos\theta}{cos\theta}}=cosθ4sinθ+cosθcosθcosθ4sinθ−cosθcosθ
since \dfrac{a+b}{c}=\dfrac{a}{c}+\dfrac{b}{c}ca+b=ca+cb where cc is not zero
=\dfrac{4\:tan\theta-1}{4\:tan\theta+1}=4tanθ+14tanθ−1
since tan\theta=\dfrac{sin\theta}{cos\theta}tanθ=cosθsinθ
=\dfrac{12-1}{12+1}=12+112−1
since tan\theta=3tanθ=3
=\dfrac{11}{13}=1311
Answer:
\boxed{\dfrac{4\:sin\theta-cos\theta}{4\:sin\theta+cos\theta}=\dfrac{11}{13}}4sinθ+cosθ4sinθ−cosθ=1311
Read more on Brainly.in
If sinθ = cos(2θ - 45°) then value of tanθ ...
- https://brainly.in/question/14287600
If tanA = x/y, prove
m sinA+ n cosA = √(m² + n²)
- https://brainly.in/question/15817313