Math, asked by shabnamkhatun12, 11 months ago

If tan 35° tan 55° = sin theta , then the lowest positive value of theta will be

Answers

Answered by vivek131019
0

the lowest positive value of theta is zero.

hope this helps you

Answered by payalchatterje
0

Answer:

Lowest value of  \theta is 90°

Step-by-step explanation:

Given,

 \tan( {35}^{o} )  \times  \tan( {55}^{o} )  =  \sin( \theta)  \\  \tan( {90}^{o}  -  {55}^{o} )  \times  \tan( {55}^{o} )  =  \sin( \theta)  \\  \cot( {55}^{o} )  \times  \tan( {55}^{o} )  =  \sin( \theta)  \\  \frac{1}{ \tan( {55}^{o} ) }  \times  \tan( {55}^{o} )  =  \sin( \theta)  \\  \sin( \theta)  = 1 \\ \sin( \theta) =  \sin( {90}^{o} )  \\  \theta =  {90}^{o}

Therefore lowest positive value of  \theta is 90°.

Here applied formula,

\tan(x)  =  \cot(\frac{\pi}{2}  - x) \\ and \:  \sin( {90}^{o} )  = 1

Some important Trigonometry formula,

sin(x)  =  \cos(\frac{\pi}{2}  - x)  \\  \tan(x)  =  \cot(\frac{\pi}{2}  - x)  \\  \sec(x)  =  \csc(\frac{\pi}{2}  - x)  \\ \cos(x)  =  \sin(\frac{\pi}{2}  - x)  \\ \cot(x)  =  \tan(\frac{\pi}{2}  - x)  \\ \csc(x)  =  \sec(\frac{\pi}{2}  - x)

know more about Trigonometry,

https://brainly.in/question/8632966

https://brainly.in/question/11371684

#SPJ2

Similar questions