If tan 35°is x than
tan215°- tan125° ÷ tan235° + tan325°
Answers
Answer:
Please mark my answer as Brainlest.
Explanation:
Given, tan 35° = k
= (tan 145° - tan 125°)/(1+tan 145°.tan 125°)
= {tan (180-35) - tan (90+35)}/{1+tan (180-35).tan (90-35)}
= {-tan 35° - (-cot 35°)}/{1+(-tan 35°)(-cot 35°)
= {-k-(-1/k)}/{1+(-k)(-1/k)}
= (-k²+1/k) ÷ (1+1)
= -k²+1/2k
= (1-k²)/2k
Therefore the value of (tan 215° - tan 125°) ÷ (tan 235° + tan325°) comes out to be equal to (1 - x²)/(1+x²).
Given:
tan 35° = x
To Find:
The value of (tan 215° - tan 125°) ÷ (tan 235° + tan325°)
Solution:
∵ x = tan 35°
∴ cot 35° = 1/x
- All trigonometric functions are positive in the first quadrant.
- The sin and cosec functions are positive in the second quadrant.
- The tan and cot functions are positive in the third quadrant.
- The cos and sec functions are positive in the fourth quadrant.
- sin, cos, and tan change to cosec, sec, and cot respectively at odd multiples of π/2.
- cosec, sec, and cot change to sin, cos, and tan respectively at odd multiples of π/2.
- No changes occur at even multiples of π/2.
Formulas to be used:
(1.) tan (90° + α) = -cot α (2.) tan (180° - α) = -tan α
(3.) tan (180° + α) = tan α (4.) tan (270° - α) = cot α
(5.) tan (270° + α) = -cot α (6.) tan (360° - α) = -tanα
Procedure:
Therefore the value of (tan 215° - tan 125°) ÷ (tan 235° + tan325°) comes out to be equal to (1 - x²)/(1+x²).
#SPJ2