If tan 3a = cot (a-26), 3a <90°, find value of angle a
Answers
Answered by
20
Tan 3a=cot(a-26)
Cot(90-3a)=cot(a-26)
90-3a=a-26
4a=64
a=16
Hence angle a=16 degree
Cot(90-3a)=cot(a-26)
90-3a=a-26
4a=64
a=16
Hence angle a=16 degree
Answered by
9
tan 3a = cot ( a - 26 )
Also,
tan∅ = cot ( 90 - ∅ )
So,
tan3a = cot ( 90 - ( a - 26 ) )
tan3a = cot ( 90 - a + 26 )
tan3a = tan ( 64 - a )
( dividing both side by tan that is cancelling tan )
3a = 64 - a
3a + a = 64
4a = 64
a = 16
Also,
tan∅ = cot ( 90 - ∅ )
So,
tan3a = cot ( 90 - ( a - 26 ) )
tan3a = cot ( 90 - a + 26 )
tan3a = tan ( 64 - a )
( dividing both side by tan that is cancelling tan )
3a = 64 - a
3a + a = 64
4a = 64
a = 16
Similar questions