Math, asked by avengersironman, 10 months ago


If
tan 3A/tanA=a then
sin3A/sinA

Answers

Answered by TRISHNADEVI
3

 \huge{ \underline{ \overline{ \mid{ \mathfrak{ \purple{ \:   \: ANSWER \:  \: } \mid}}}}}

 \underline{ \mathfrak{ \:  \: Given, \:  \: }} \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \mathtt{\frac{tan  \: 3A}{tan  \: A } = a \:  \:  -  -  -  -  -  > (1)} \\  \\  \\  \underline{ \mathfrak{ \:  \: To   \:  \: find :- }} \\   \\  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \mathtt{\frac{sin  \: 3A}{sin  \: A}  \: =  \:  \: ? }

 \mathfrak{Now, } \\ \\ \: \: \:  \:  \:  \:  \:  \mathtt{ \frac{sin \: 3A}{sin \: A} } \\  \\   \mathtt{=  \frac{sin \: 3A \:. \:  cos \:A }{sin \: A.cos \: A} } \\  \\  \mathtt{ =  \frac{2 \: sin \: 3A.cos \:A }{2sin \:A.cos \: A } } \\  \\  \mathtt{ =  \frac{ 2 \: sin \:  3A.cos \: A}{sin \: 2A} } \\  \\  \mathtt{ =  \frac{2 \: sin \: 3A.cos \: A}{sin \: (3A - A)} } \\  \\   \mathtt{=  \frac{2 \: sin \: 3A.cos \:A }{sin \: 3A.cos \:A  - cos \: 3A.sin \: A} } \\  \\ \mathtt{  =  \frac{ \frac{2 \: sin \: 3A.cos \:A }{cos \: A.cos \: 3A} }{ \frac{sin \: 3A.cos \:A  - cos \: 3A.sin \: A}{cos \: A.cos \: 3A} }}  \\  \\  \mathtt{ =  \frac{2 \: tan \: 3A}{tan \: 3A -tan \: A }}  \\  \\   \mathtt{=  \frac{2  \: tan \: 3A}{tan \:A( \frac{tan \: 3A}{tan \: A}   - 1)} } \\  \\   \mathtt{=  \frac{2 \times  \frac{tan \: 3A}{tan \: A} }{ \frac{tan \: 3A}{tan \:A } - 1 }}  \\  \\ \mathtt{  =  \frac{2a}{a - 1}  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  [From  \:  \: (1)] \: }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \boxed{ \mathtt{ \therefore \:  \: \frac{sin  \: 3A}{sin  \: A}  \: =   \frac{2a}{ a- 1} }}</p><p>

Similar questions