If tan α=4/3 then (Sin α + Cos α)=?
Answers
Answered by
3
Given -
To Find -
Solution -
It means , in a right angled triangle ,
Perpendicular = 4
Base = 3
So, using PGT(Pythagoras Theorem)
Hypotenuse= 5
So,
so,
Answered by
2
Answer:
Given -
\tan( \alpha ) = \frac{4}{3}tan(α)=34
To Find -
\sin( \alpha ) + \cos( \alpha )sin(α)+cos(α)
Solution -
\tan( \alpha ) = \frac{perpendicular}{base} = \frac{4}{3}tan(α)=baseperpendicular=34
It means , in a right angled triangle ,
Perpendicular = 4
Base = 3
So, using PGT(Pythagoras Theorem)
Hypotenuse= 5
So,
\sin( \alpha ) + \cos( \alpha ) = \frac{perpendicular}{hypotenuse} + \frac{base}{hypotenuse}sin(α)+cos(α)=hypotenuseperpendicular+hypotenusebase
so,
\begin{gathered}\implies \: \frac{perp \: + \: base}{hypo} \\ \implies \: \frac{4 \: + \: 3}{5} \\ \implies \: \frac{7}{5}\end{gathered}⟹hypoperp+base⟹54+3⟹57
{\huge{\boxed{\bf{\blue{Answer={\red{\frac{7}{5}}}}}}}}Answer=7/5
Similar questions