Math, asked by smoked, 6 months ago

If tan α=4/3 then (Sin α + Cos α)=?​

Answers

Answered by Anonymous
3

Given -

 \tan( \alpha )  =  \frac{4}{3}

To Find -

 \sin( \alpha )  +  \cos( \alpha )

Solution -

 \tan( \alpha )  =  \frac{perpendicular}{base}  =  \frac{4}{3}

It means , in a right angled triangle ,

Perpendicular = 4

Base = 3

So, using PGT(Pythagoras Theorem)

Hypotenuse= 5

So,

 \sin( \alpha )  +  \cos( \alpha )  =    \frac{perpendicular}{hypotenuse} + \frac{base}{hypotenuse}

so,

 \implies \:  \frac{perp \:  +  \: base}{hypo}  \\  \implies \:  \frac{4 \:  +  \: 3}{5}  \\  \implies \:  \frac{7}{5}

{\huge{\boxed{\bf{\blue{Answer={\red{\frac{7}{5}}}}}}}}

Answered by udishakeshariu
2

Answer:

Given -

\tan( \alpha ) = \frac{4}{3}tan(α)=34

To Find -

\sin( \alpha ) + \cos( \alpha )sin(α)+cos(α)

Solution -

\tan( \alpha ) = \frac{perpendicular}{base} = \frac{4}{3}tan(α)=baseperpendicular=34

It means , in a right angled triangle ,

Perpendicular = 4

Base = 3

So, using PGT(Pythagoras Theorem)

Hypotenuse= 5

So,

\sin( \alpha ) + \cos( \alpha ) = \frac{perpendicular}{hypotenuse} + \frac{base}{hypotenuse}sin(α)+cos(α)=hypotenuseperpendicular+hypotenusebase

so,

\begin{gathered}\implies \: \frac{perp \: + \: base}{hypo} \\ \implies \: \frac{4 \: + \: 3}{5} \\ \implies \: \frac{7}{5}\end{gathered}⟹hypoperp+base⟹54+3⟹57

{\huge{\boxed{\bf{\blue{Answer={\red{\frac{7}{5}}}}}}}}Answer=7/5

Similar questions