Math, asked by Manojsindur, 26 days ago

If tan^4 theta +tan ^2 theta =1,then sec^2 theta is equal to :​

Attachments:

Answers

Answered by TrustedAnswerer19
43

\huge\mathcal{\fcolorbox{cyan}{black}{\pink{ANSWER}}}

Given,

 {tan}^{4} \: \theta +  {tan  }^{2} \: \theta = 1 \\  \implies \:  {tan}^{4}\: \theta = 1 -  {tan}^{2} \: \theta \:  \\  \implies \:  \frac{ {tan}^{4} \: \theta}{ {tan}^{2} \: \theta} =  \frac{1}{ {tan}^{2}\: \theta } -  \frac{ {tan}^{2} \: \theta}{ {tan}^{2} \: \theta}    \\  \implies \:  {tan}^{2} \: \theta =  \frac{1}{ {tan}^{2} \: \theta}  - 1 \\  \implies \:  {tan}^{2} \: \theta =  {cot}^{2} \: \theta - 1 \\   \implies \:  {tan}^{2} \: \theta + 1 =  {cot}^{2} \: \theta \\  \implies \:  {sec}^{2} \: \theta =  {cot}^{2} \: \theta \:

Some notes :

\green \odot  \:  \:  {sec}^{2} \: \theta  -  {tan}^{2} \: \theta = 1 \\  \\  \green \odot \:  \frac{1}{ {tan}^{2}\: \theta }  =  {cot}^{2} \: \theta \:  \: \\  cause \: \:  \:  \:   \frac{1}{tan\: \theta}  = cot \: \: \theta

Attachments:
Similar questions