Math, asked by Anonymous, 10 months ago

If tan (π/4+theta) + tan (π/4 - theta) = a, then
tan square (π/4 + theta) + tan square (π/4-theta) is ????

Answers

Answered by Anonymous
43

AnswEr :

The value of above expression is a² - 2

Given that,

 \sf \:  \tan( \dfrac{\pi}{4} +  \alpha  )  +  \tan( \dfrac{\pi}{4} -  \alpha  )  = a -  -  --  -  -  - (1)

To finD

 \tan {}^{2} ( \dfrac{\pi}{4}  +  \alpha )  +  \tan {}^{2} ( \dfrac{\pi}{4}  -  \alpha )

Squaring equation (1) on both sides,

  \sf \: \tan {}^{2} ( \dfrac{\pi}{4}  +  \alpha )  +  \tan {}^{2} ( \dfrac{\pi}{4}  -  \alpha )  + 2 \tan( \dfrac{\pi}{4}  +  \alpha)  \tan( \dfrac{\pi}{4}  -  \alpha )  =  {a}^{2}  \\  \\  \longrightarrow \:  \sf \: \tan {}^{2} ( \dfrac{\pi}{4}  +  \alpha )  +  \tan {}^{2} ( \dfrac{\pi}{4}  -  \alpha )  + 2 \bigg( \dfrac{ \tan( \dfrac{\pi}{4} )   +  \tan( \alpha ) }{1    -  \tan( \dfrac{\pi}{4} ) \tan( \alpha )  }  \bigg) \bigg( \dfrac{ \tan( \dfrac{\pi}{4} )    -   \tan( \alpha ) }{1   +  \tan( \dfrac{\pi}{4} ) \tan( \alpha )  }  \bigg) =  {a}^{2}  \\   \\  \longrightarrow \:  \sf \: \tan {}^{2} ( \dfrac{\pi}{4}  +  \alpha )  +  \tan {}^{2} ( \dfrac{\pi}{4}  -  \alpha ) + 2  \times  \dfrac{ 1 +  \tan( \alpha ) }{1 -  \tan( \alpha ) }  \times  \dfrac{1 -  \tan( \alpha ) }{1 +  \tan( \alpha ) }  =  {a}^{2}  \\  \\  \longrightarrow \:  \sf \: \tan {}^{2} ( \dfrac{\pi}{4}  +  \alpha )  +  \tan {}^{2} ( \dfrac{\pi}{4}  -  \alpha ) + 2 =  {a}^{2}  \\  \\  \longrightarrow \:  \boxed{ \boxed{ \sf \tan {}^{2} ( \dfrac{\pi}{4}  +  \alpha )  +  \tan {}^{2} ( \dfrac{\pi}{4}  -  \alpha ) =  {a}^{2}  - 2}}

Identities Used :

  • \sf tan(a + b) = \dfrac{tan(a) + tan (b)}{1 - tan(a)tan(b)} \\

  • \sf tan(a - b) = \dfrac{tan(a) - tan (b)}{1 + tan(a)tan(b)} \\

  • tan(π/4) = 1
Answered by Anonymous
53

Answer:

\underline{\bf Given:}\:\rm\tan\left(\dfrac{\pi}{4} +\theta\right) +\tan\left(\dfrac{\pi}{4} - \theta\right) = a\\\\\underline{\bf To\:Find:}\:\tan^2\left(\dfrac{\pi}{4} +\theta\right) +\tan^2\left(\dfrac{\pi}{4} - \theta\right) = ?

\rm Let, \quad\tan\left(\dfrac{\pi}{4} +\theta\right)=x \\\\\rm Then,\quad\tan\left(\dfrac{\pi}{4} - \theta\right) = \dfrac{1}{x}

  • As we can see that both are Opposite of each other.

\underline{\bigstar\:\textbf{According to the Question :}}

:\implies\sf \tan\left(\dfrac{\pi}{4} +\theta\right) +\tan\left(\dfrac{\pi}{4} - \theta\right) = a\\\\{\scriptsize\qquad\bf{\dag}\:\:\texttt{Taking value in x.}}\\\\:\implies\sf x+\dfrac{1}{x}=a\\\\{\scriptsize\qquad\bf{\dag}\:\:\texttt{Squaring Both Sides.}}\\\\:\implies\sf \left(x+\dfrac{1}{x}\right)^2=(a)^2\\\\\\:\implies\sf x^2+\left(\dfrac{1}{x}\right)^2+\left(2 \times x \times \dfrac{1}{x}\right)=a^2\\\\\\:\implies\sf x^2 + \dfrac{1}{x^2} + 2 = a^2\\\\\\:\implies\sf x^2 + \dfrac{1}{x^2} =a^2 - 2\\\\\\:\implies\underline{\boxed{\sf \tan^2\left(\dfrac{\pi}{4} +\theta\right) +\tan^2\left(\dfrac{\pi}{4} - \theta\right) = a^2 - 2}}

Similar questions