Math, asked by abaoypaul1458, 3 months ago

If tan 4A.tan 6A = 1, Find the value of A.​

Answers

Answered by tripurasubrata
0

Step-by-step explanation:

vgy6 6009nmbhvhvhbbbbh88jjbbbbbbbbbbbbbb

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:tan4A \: tan6A = 1

We know that,

\green{ \boxed{ \sf \: tanx = \dfrac{sinx}{cosx}}}

Using this, we get

\rm :\longmapsto\:\dfrac{sin4A}{cos4A}  \times \dfrac{sin6A}{cos6A}  = 1 \:

\rm :\longmapsto\:\dfrac{sin4A \: sin6A}{cos4A \: cos6A}  = 1

\rm :\longmapsto\:cos6A \: cos4A = sin6A \: sin4A

\rm :\longmapsto\:cos6A \: cos4A  -  sin6A \: sin4A = 0

\green{ \boxed{  \because\bf \: cosxcosy - sinxsiny = cos(x + y)}}

\rm :\longmapsto\:cos(6A + 4A) = 0

\rm :\longmapsto\:cos(10A) = 0

\rm :\longmapsto\:10A = \bigg(2n + 1 \bigg)\dfrac{\pi}{2}  \: where \: n \:  \in \: Z

 \boxed{ \because \sf{ \: cosx = 0 \implies \: x = \bigg(2n + 1 \bigg)\dfrac{\pi}{2}  \: where \: n \:  \in \: Z}}

\rm :\longmapsto\:A = \bigg(2n + 1 \bigg)\dfrac{\pi}{20}  \: where \: n \:  \in \: Z

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf T-eq & \bf Solution \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf sinx = 0 & \sf x = n\pi \\ \\ \sf cosx = 0 & \sf x = (2n + 1)\dfrac{\pi}{2}\\ \\ \sf tanx = 0 & \sf x = n\pi\\ \\ \sf sinx = siny & \sf x = n\pi + {( - 1)}^{n}y \\ \\ \sf cosx = cosy & \sf x = 2n\pi \pm \: y\\ \\ \sf tanx = tany & \sf x = n\pi + y \end{array}} \\ \end{gathered}\end{gathered}

   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \purple{\boxed{ \bf \: where \: n \:  \in \:  \: Z}}

Similar questions