If tan^4x-tan^2x=1 then prove that sin^4x+sin^2x=1
Answers
Answered by
0
Answer:
Step-by-step explanation:
Tan⁴x - Tan²x = 1
=> Tan⁴x = 1 + Tan²x
=> Tan⁴x = Sec²x (∵ 1 + Tan²x = Sec²x)
=> Sin⁴x / Cos⁴x = 1/Cos²x
=> Sin⁴x = Cos⁴x / Cos²x
=> Sin⁴x = Cos²x
=> Sin⁴x = 1 - Sin²x ( ∵ Cos²x = 1 - Sin²x)
=> Sin⁴x + Sin²x = 1
Hence proved.
Similar questions
Physics,
4 months ago
English,
4 months ago
Social Sciences,
4 months ago
Math,
10 months ago
Physics,
1 year ago