Math, asked by guptaayush59093, 1 month ago

If tan 69 + tan 66 − tan 66 tan 69 = 2, ℎ = a) -1 b) ½ c) – ½ d) None​

Answers

Answered by mathdude500
1

\large\underline{\sf{To\:Find - }}

The value of

\rm :\longmapsto\:tan69\degree  + tan66\degree  - tan69\degree tan66\degree

\large\underline{\sf{Solution-}}

Consider,

\rm :\longmapsto\:tan135\degree  = tan(69\degree  + 66\degree )

We know,

 \boxed{ \bf{ \: tan(x + y) =  \frac{tanx + tany}{1 - tanx \: tany}}}

So, using this

\rm :\longmapsto\:tan(180\degree  - 45\degree ) = \dfrac{tan69\degree  + tan66\degree }{1 - tan69\degree tan66\degree }

We know,

 \boxed{ \bf{ \: tan(180\degree  - x) =  - tanx}}

So, using this, we get

\rm :\longmapsto\: -  \: tan( 45\degree ) = \dfrac{tan69\degree  + tan66\degree }{1 - tan69\degree tan66\degree }

\rm :\longmapsto\: -  \: 1 = \dfrac{tan69\degree  + tan66\degree }{1 - tan69\degree tan66\degree }

\rm :\longmapsto\: - 1 + tan69\degree tan66\degree  = tan69\degree  + tan66\degree

\bf\implies \:tan69\degree  + tan66\degree  - tan69\degree tan66\degree  =  - 1

Hence,

  • Option a) is correct.

Additional Information :-

 \boxed{ \bf{ \: sin(x + y) = sinxcosy + sinycosx}}

 \boxed{ \bf{ \: sin(x  -  y) = sinxcosy  -  sinycosx}}

 \boxed{ \bf{ \: cos(x + y) = cosxcosy - sinxsiny}}

 \boxed{ \bf{ \: cos(x  -  y) = cosxcosy +  sinxsiny}}

 \boxed{ \bf{ \: tan(x - y) =  \frac{tanx - tany}{1 + tanxtany}}}

 \boxed{ \bf{ \: tan(45\degree  - x) =  \frac{1 - tanx}{1 + tanx}}}

 \boxed{ \bf{ \: tan(45\degree   +  x) =  \frac{1  +  tanx}{1  -  tanx}}}

Similar questions