Math, asked by jerry3499, 5 months ago

If tan =7/4 then cot a is

Answers

Answered by happy6370
0

Answer:

4/7 is right answer because cot is reciprocal of tan

Answered by singhdisha687
1

Answer:

If (tan theta + cot theta ) = 7/4 then (tan^2 theta +cot^2 theta) = \dfrac{17}{16}

16

17

Step-by-step explanation:

⁸Given tan\theta +cot\theta =\dfrac{7}{4}tanθ+cotθ=

4

7

We have to find tan^{2}\theta +cot^{2}\thetatan

2

θ+cot

2

θ

We know the identity ( \textrm{a+b} )^{2}=\textrm{a}^{2}+\textrm{b}^{2}+2\textrm{ab}(a+b)

2

=a

2

+b

2

+2ab

So we have

(tan\theta +cot\theta )^{2}=tan^{2}\theta +cot^{2} \theta +2tan\theta cot\theta(tanθ+cotθ)

2

=tan

2

θ+cot

2

θ+2tanθcotθ

\Rightarrow tan^{2}\theta +cot^{2} \theta = (tan\theta +cot\theta )^{2}-2tan\theta cot\theta⇒tan

2

θ+cot

2

θ=(tanθ+cotθ)

2

−2tanθcotθ

\Rightarrow tan^{2}\theta +cot^{2} \theta = (\dfrac{7}{4} )^{2}-2tan\theta \times\frac{1}{tan\theta }⇒tan

2

θ+cot

2

θ=(

4

7

)

2

−2tanθ×

tanθ

1

\Rightarrow tan^{2}\theta +cot^{2} \theta = (\dfrac{7}{4} )^{2}-2⇒tan

2

θ+cot

2

θ=(

4

7

)

2

−2

\Rightarrow tan^{2}\theta +cot^{2} \theta =\dfrac{49}{16}-2⇒tan

2

θ+cot

2

θ=

16

49

−2

\Rightarrow tan^{2}\theta +cot^{2} \theta =\dfrac{49-32}{16}⇒tan

2

θ+cot

2

θ=

16

49−32

\Rightarrow tan^{2}\theta +cot^{2} \theta =\dfrac{17}{16}⇒tan

2

θ+cot

2

θ=

16

17

May this help u plzz mark me as brainliest

Similar questions