if tan 7.5° *tan 52.5° * tans 67.5° =
then a +b is
Attachments:
Answers
Answered by
7
Gɪᴠᴇɴ :-
- tan 7.5° *tan 52.5° * tan 67.5° = (√a) - b
Tᴏ Fɪɴᴅ :-
- (a + b)
Fᴏʀᴍᴜʟᴀ ᴜsᴇᴅ :-
- tanA * tan(60 - A) * tan(60 + A) = 3 * tan(3A)
- tan(A/2) = √[(1 - cosA)/(1 + cosA)
Sᴏʟᴜᴛɪᴏɴ :-
→ tan 7.5° *tan 52.5° * tan 67.5°
→ tan 7.5° * tan(60 - 7.5°) * tan(60 + 7.5°)
comparing with tanA * tan(60 - A) * tan(60 + A) now , we get,
→ 3 * tan(3 * 7.5°)
→ 3 * tan(22.5°)
____________________
Now, we have to Find value of tan(22.5°) = tan(45°/2) .
using tan(A/2) = √[(1 - cosA)/(1 + cosA)] we get,
→ tan(45°/2) = √[(1 - cos45°)/(1 + cos45°)]
Putting value of cos45° = (1/√2) now, we get,
→ √[(1 - (1/√2))/(1 + (1/√2))]
→ √[ (√2 - 1) / (√2 + 1) ]
Rationalizing Now,
→ √[ {(√2 - 1) / (√2 + 1)} * {(√2 - 1) / (√2 - 1)} ]
→ √[ (√2 - 1)² / (2 - 1) ]
→ (√2 - 1)
_____________________
Therefore,
→ 3(√2 - 1) = (√a) - b
→ 3√2 - 3 = (√a) - b
→ √(9*2) - 3 = (√a) - b
→ √(18) - 3 = (√a) - b
comparing Now, we get,
☛ a = 18
☛ b = 3
Hence,
☞ a + b = 18 + 3 = 21 (Ans.)
____________________________
Similar questions