Math, asked by pagarerasika23, 1 year ago

If tan a = 1/2 evaluate 2sin a+cos a /
4cos a+3sin a​

Answers

Answered by Anonymous
3

Answer:

\large\bold\red{\frac{4}{11}}

Step-by-step explanation:

Given,

 \tan(a)  =  \frac{1}{2}

Lets take a right angled triangle having,

perpendicular = p

base = b

hypotenus = h

Angle a is contained in the assumed triangle.

Therefore,

 \tan(a)  =  \frac{p}{b}  =  \frac{1}{2}  \\  \\  =  > b = 2p \:  \:  \:  \:  \: ..........(i)

Also,

we know that,

in a triangle,

h =  \sqrt{ {p}^{2} +  {b}^{2}  }  \\  \\  =  > h =  \sqrt{ {p}^{2} +  {(2p)}^{2}  }  \\  \\  =  > h =  \sqrt{ {p}^{2}  + 4 {p}^{2} }  \\  \\  =  > h =  \sqrt{5 {p}^{2} }  \\  \\  =  > h =  \sqrt{5} p

Therefore,

 \sin(a)  =  \frac{p}{h}  =  \frac{p}{ \sqrt{5} p}  =  \frac{1}{ \sqrt{5} }

and

 \cos(a)  =  \frac{b}{h}  =  \frac{2p}{ \sqrt{5}  p} =  \frac{2}{ \sqrt{5} }

Therefore,

 \frac{2 \sin(a)  +  \cos(a) }{4 \cos(a)  + 3 \sin(a) }  =  \frac{ \frac{2}{ \sqrt{5}  } +  \frac{2}{ \sqrt{5} }  }{ \frac{8}{ \sqrt{5} } +  \frac{3}{ \sqrt{5} }  }  \\  \\  =  \frac{2 + 2}{8 + 3 }  \\  \\  =  \frac{4}{11}

Hence,

\bold{Value=\frac{4}{11}}

Similar questions