Math, asked by nikhilnikki200, 10 months ago

IF Tan A =1/√3 and Tan B=√3, then find Sin A.Cos B+Cos A.sin B.. ?

Answers

Answered by Rohit18Bhadauria
16

Given:

\bf{tanA=\dfrac{1}{\sqrt{3}}}

\bf{tanB=\sqrt{3}}

To Find:

  • Value of sinA.cosB+cosA.sinB

Solution:

We know that,

\longrightarrow\bf{tan30^{\circ}=\dfrac{1}{\sqrt{3}}}

\longrightarrow\bf{tan60^{\circ}=\sqrt{3}}

\longrightarrow\bf{sin30^{\circ}=\dfrac{1}{2}}

\longrightarrow\bf{sin60^{\circ}=\dfrac{\sqrt{3}}{2}}

\longrightarrow\bf{cos30^{\circ}=\dfrac{\sqrt{3}}{2}}

\longrightarrow\bf{cos60^{\circ}=\dfrac{1}{2}}

Now, it is given that

\longrightarrow\sf{tanA=\dfrac{1}{\sqrt{3}}}

\longrightarrow\sf{tanA=tan30^{\circ}}

On comparing both the sides, we get

\longrightarrow\sf{A=30^{\circ}}

Also,

\longrightarrow\sf{tanB=\sqrt{3}}

\longrightarrow\sf{tanB=tan60^{\circ}}

On comparing both the sides, we get

\longrightarrow\sf{B=60^{\circ}}

Now,

\longrightarrow\sf{sinA.cos B+cosA.sinB}

On putting values of A and B in above expression, we get

\longrightarrow\sf{sin(30^{\circ}).cos(60^{\circ})+cos(30^{\circ}).sin(60^{\circ})}

\longrightarrow\sf{\dfrac{1}{2}\times\dfrac{1}{2}+\dfrac{\sqrt{3}}{2}\times\dfrac{\sqrt{3}}{2}}

\longrightarrow\sf{\dfrac{1}{4}+\dfrac{3}{4}}

\longrightarrow\sf{\dfrac{1+3}{4}}

\longrightarrow\sf{\dfrac{4}{4}}

\longrightarrow\sf{1}

Hence, the value of sinA.cosB+cosA.sinB is 1.

Answered by Anonymous
6

Answer:

Ans : 1

check the attachment for the complete answer...

hope this helps you...

Attachments:
Similar questions