Math, asked by ShanayaPatil666, 1 month ago

if Tan A=1/3 prove that cosec^2 A=1 + Cot^2 A​

Answers

Answered by kamalhajare543
6

Answer:

 \sf \: tan  \: A=\frac{1}{3}

Then cot A=3

We know that,,.

 \sf \boxed{ \red{ \sf sec {}^{2} a = 1 +  tan {}^{2} a}}

1 +  \bigg(  \huge{\frac{1}{3}\bigg)} {}^{2}

1 \frac{1}{9}  =  \frac{10}{9}

 \sf \: sec \: A \:  =  \frac{ \sqrt{10} }{3}

  \sf \: then \:  \pink{ \boxed{\sf \: sec \: A \: =  \frac{3}{ \sqrt{10} } }}

We know that.

 \sf \: cos {}^{2} a + sin {}^{2} a = 1

 \sf \: sin {}^{2} a = 1 - cos {}^{2} a = 1

1 \frac{9}{10}  =  \frac{1}{10}

 \sf \: sin \: a =  \frac{1}{ \sqrt{10} }

then cosec A =√10

LHS=COSEC^2A

=(√10)^2=10

RHS=1+cot^2A

T(3)^2=A+1

=10. ( From (1) and (2). )

LHS= RHS.

Hence, vertified

Similar questions