Math, asked by fayizj3, 6 months ago

if tan a=1/7and tanb=1/3show that 2A+B=pi/4

Attachments:

Answers

Answered by pranayasahu
1

Answer:

cos2A = ( 1 - tan ² A ) / ( 1 + tan ² A )

= ( 1 - 1 / 7² ) / ( 1 + 1 / 7² )

= 48/49 × 49/50 = 24/25

cos2A = 24/25

sin4B = sin 2 ( 2B )

= [ 2 tan2B / ( 1 + tan² 2B) ]

= [ 2 { 2 tanB / ( 1 - tan² B ) } ] / [ 1 + { 2 tanB / ( 1 - tan² B ) } ² ]

= 4 tanB ( 1 - tan² B) / ( 1+ tan⁴B - 2tan²B + 4tan²B )

= 4 tanB ( 1 - tan² B) / ( 1+ tan⁴B + 2tan²B )

= 4 tanB ( 1 - tan² B) / ( 1 + tan² B) ²

= 4 ( 1/3 ) ( 1 - ¹/₉ ) / ( 1 + ¹/₉ ) ²

= 24/ 25

sin4B = 24/ 25

Hence proved cos2A = sin4B ...

Similar questions