if tan a=1 and B=root 3 evaluate cosAcosB-sinAsinB
Answers
Answered by
85
hello users ....
solution:-
we know that
tan 45° = 1
and
tan 60° = √3
and
cos 45° = 1 / √2
and
cos 60° = 1/2
and
sin 45° = 1 / √2
and
sin 60° = √3 / 2
here,
tan A = 1 = tan 45°
=> A = 45°
and
tan B = √3 = tan 60°
=> B = 60°
And
cos A cos B - sin A sin B
=> cos 45° cos 60° - sin 45°sin 60°
=> 1 / √2 × 1 / 2 - 1 / √2 × √3 / 2
=> 1 / 2√2 - √3 / 2√2
=> (1 - √3) / 2√2 Answer
# hope it helps :)
solution:-
we know that
tan 45° = 1
and
tan 60° = √3
and
cos 45° = 1 / √2
and
cos 60° = 1/2
and
sin 45° = 1 / √2
and
sin 60° = √3 / 2
here,
tan A = 1 = tan 45°
=> A = 45°
and
tan B = √3 = tan 60°
=> B = 60°
And
cos A cos B - sin A sin B
=> cos 45° cos 60° - sin 45°sin 60°
=> 1 / √2 × 1 / 2 - 1 / √2 × √3 / 2
=> 1 / 2√2 - √3 / 2√2
=> (1 - √3) / 2√2 Answer
# hope it helps :)
Answered by
2
Answer:Here is your answer
In the pics
Attachments:
Similar questions